Ученые БФУ выяснили, что наночастицы золота, покрытые тонким слоем кремнезема, лучше рассеивают свет, чем те, что имеют плотную «шубу». Такие частицы используются в качестве системы адресной доставки лекарств, а сильное рассеяние света позволит отслеживать их перемещение по организму с помощью специальных приборов. Результаты исследования опубликованы в журнале Nanomaterials. Работа выполнена на базе НОМЦ «Северо-Западный центр математических исследований имени Софьи Ковалевской» БФУ имени И. Канта.
В современной медицине активно развивается адресная доставка лекарств. Этот подход заключается в том, что препарат доставляется с помощью специальных носителей строго в определенное место, например, к опухоли. Это позволяет избежать повреждения и гибели здоровых клеток и тканей.
Одна из возможных средств доставки лекарств — наночастицы золота, к которым присоединяют молекулы лекарства. Такую конструкцию покрывают специальной оболочкой, защищающей лекарство от слишком раннего высвобождения. Кроме того, к ней крепятся антитела — белковые молекулы, нацеливающие частицы в нужное место.
В качестве материала для создания оболочки таких частиц используется кремнезем — соединение, которое по химическому составу идентично обычному песку. Эти покрытия оказываются крайне удобны потому, что они стабильны и безопасны для человека, а еще их толщину можно легко и очень точно контролировать.
Ранее ученых в основном интересовало, какие размер и форму должны иметь наночастицы на основе золота, чтобы наиболее эффективно доставлять лекарства. Но их оптическим свойствам уделялось гораздо меньше внимания. При этом, если частицы способны хорошо рассеивать падающий на них свет определенного диапазона, их можно отслеживать с помощью специальных приборов, а значит, и контролировать доставку лекарств. Способность рассеивать свет во многом зависит от напряженности электрического поля вокруг частиц, поэтому по его значению можно понять, какие частицы будут лучше всего «светиться».
Ученые из БФУ им. И. Канта математически смоделировали значения электрического поля, которое создается тремя типами структур — наночастицами золота без оболочки, частицами, покрытыми слоем кремнезема, а также пустой кремнеземной капсулой. При этом авторы исследовали оболочки разной толщины — от двух до двадцати нанометров (величины, не превышающие размер самых мелких вирусных частиц).
Оказалось, что наибольшая напряженность электрического поля возникала вокруг частиц, покрытых слоем кремнезема толщиной 20 нм. Напряженность вокруг них более чем в 2,5 раза превышала значения, характерные для свободных наночастиц золота. Это привело к тому, что плотно «одетые» частицы хуже рассеивали свет. Тонкая оболочка — порядка 2-5 нм — наоборот, усиливала рассеяние, благодаря чему частицы легче выявлялись при их освещении лазером.
![]() |
Андрей Зюбин, кандидат физико-математических наук, заведующий лабораторией математического моделирования оптических свойств наноматериалов БФУ им. И. Канта: |
Наше исследование показало, что эффект кремниевой оболочки неоднозначен: если она тонкая, то увеличивает рассеяние света частицами, если толстая — мешает ему. Это позволило определить, что в первом случае частицы легче отследить, а потому они более перспективны в качестве системы доставки лекарств. В дальнейшем мы планируем изучить другие физические свойства наночастиц золота, покрытых слоями из кремнезема разной толщины. |
В материале упоминаются
Ещё по теме
Личный кабинет для
Личный кабинет для cтудента
Даю согласие на обработку представленных персональных данных, с Политикой обработки персональных данных ознакомлен
Подтверждаю согласие